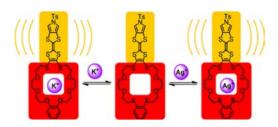
ORGANIC LETTERS

2013 Vol. 15, No. 7 1452–1455


Selective Redox-Active Molecular Receptors for K⁺ and Ag⁺

Karina R. Larsen,[†] Carsten Johnsen,[†] Ole Hammerich,[‡] and Jan O. Jeppesen*,[†]

Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark, and Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark joi@sdu.dk

Received January 18, 2013

ABSTRACT

Two new tetrathiafulvalene based receptors in which the favorable redox properties of the tetrathiafulvalene unit are coupled to either a benzocrown (X = O) or a dithiabenzo-crown (X = S) ether binding site were designed and synthesized as receptors for K^+ and Ag^+ . The receptors display a good (K^+ , X = O) to strong (Ag^+ , X = S) affinity toward the cation and a high discrimination against other metal cations.

The advent of supramolecular chemistry¹ has aroused the interest of chemists of many different persuasions in the development of molecular receptors capable of recognizing specific chemical substrates. Redox-active receptors² are of particular interest because their affinity toward different substrates are reflected by the redox properties of the receptor allowing supramolecular systems capable of performing controlled uptake and release of substrates to be constructed. Redox-active molecular receptors are typically designed to allow the detection of substrates by binding-induced changes in the redox properties and are generally being built by the covalent association of an

appropriate binding site and a redox-active unit. In the context of redox-active receptors, tetrathiafulvalene³ (TTF) constitutes a unique building block on account of the fact that it can exist in three stable redox states (i.e., as neutral TTF, as the radical cation TTF*+, and the dicationic TTF²⁺) and TTF and its derivatives have been used as the redox-active unit in a number of anion⁴ and cation⁵ responsive receptors. A majority of the cation responsive receptors involve a binding site made of a crown-ether cavity or a coordinating acyclic ether moiety.⁶ Although a huge amount of work has been devoted to create TTF

[†] University of Southern Denmark.

[‡]University of Copenhagen.

^{(1) (}a) Lehn, J.-M. Supramolecular Chemistry; VCH: Weinheim, Germany, 1995. (b) Stoddart, J. F. Nat. Chem. 2009, 1, 14–15.

^{(2) (}a) Clare, J. P.; Statnikov, A.; Lynch, V.; Andrew L. Sargent, A. L.; Sibert, J. W. J. Org. Chem. **2009**, 74, 6637–6646. (b) Yang, F.; Liu, Z.; Hong, B.; Guo, H. J. Incl. Phenom. Macrocycl. Chem. **2012**, 72, 183–188.

^{(3) (}a) Schukat, G.; Fanghänel, E. Sulfur Rep. 1996, 18, 1–294. (b) Bryce, M. R. J. Mater. Chem. 2000, 10, 589–598. (c) Nielsen, M. B.; Lomholt, C.; Becher, J. Chem. Soc. Rev. 2000, 29, 153–164. (d) Segura, J. L.; Martín, N. Angew. Chem., Int. Ed. 2001, 40, 1372–1409. (e) Inagi, S.; Naka, K.; Chujo, Y. J. Mater, Chem. 2007, 17, 4122–4135. (f) Martín, N.; Sánchez, L.; Herranz, M. a. A.; Illescas, B.; Guldi, D. M. Acc. Chem. Res. 2007, 40, 1015–1024. (g) Lorcy, D.; Bellec, N.; Fourmigué, M.; Avarvari, N. Coord. Chem. Rev. 2009, 253, 1398–1438.

^{(4) (}a) Park, J. S.; Bejger, C.; Larsen, K. R.; Nielsen, K. A.; Jana, A.; Lynch, V. M.; Jeppesen, J. O.; Kim, D.; Sessler, J. L. *Chem. Sci.* **2012**, *3*, 2685–2689. (b) Nielsen, K. A. *Tetrahedron Lett.* **2012**, *53*, 5616–5618.

^{(5) (}a) Christensen, K.; Becher, J.; Hansen, T. K. Tetrahedron Lett. 1992, 33, 3035–3038. (b) Le Derf, F.; Levillain, E.; Trippé, G.; Gorgues, A.; Sallé, M.; Sebastian, R. M.; Caminade, A. M.; Majoral, J. P. Angew. Chem., Int. Ed. 2001, 40, 224–227. (c) Trippé, G.; Levillain, E.; Le Derf, F.; Gorgues, A.; Sallé, M.; Jeppesen, J. O.; Nielsen, K.; Becher, J. Org. Lett. 2002, 4, 2461–2464. (d) Trippé, G.; Le Derf, F.; Frère, P.; Sallé, M. Tetrahedron Lett. 2008, 49, 5452–5454. (e) Canevet, D.; Sallé, M.; Zhang, G.; Zhang, D.; Zhu, D. Chem. Commun. 2009, 2245–2269.

^{(6) (}a) Hansen, T. K.; Jørgensen, T.; Stein, P. C.; Becher, J. J. Org. Chem. 1992, 57, 6403–6409. (b) Dieing, R.; Morisson, V.; Moore, A. J.; Goldenberg, L. M.; Bryce, M. R.; Raoul, J.-M.; Petty, M. C.; Garin, J.; Saviron, M.; Lednev, I. K.; Hester, R. E.; Moore, J. N. J. Chem. Soc., Perkin Trans. 21996, 1587–1593. (c) Benhaoua, C.; Mazari, M.; Mercier, N.; Le Derf, F.; Sallé, M. New. J. Chem. 2008, 32, 913–916 and references cited therein.

based receptors with high sensitivity toward cations, selectivity has received much less attention.

Here, we describe the synthesis and characterization of two unique TTF based receptors in which the favorable redox properties of the monopyrrolo-TTF 7 (MPTTF) unit are coupled to either a benzo-crown (1) or a dithiabenzo-crown (2) ether binding site. Subsequently, binding studies between the receptors 1 and 2 and a variety of cations are described and it is demonstrated that the oxygen/sulfur atoms attached to the benzo moiety in the redox-active receptors control the selectivity toward K^+ and Ag^+ .

The MPTTF crown ethers **1** and **2** were synthesized as illustrated in Scheme 1.8 Cathecol **3** and dithiole benzene **4** were alkylated with the glycol derivative **5** in MeCN in the presence of K₂CO₃ and KI to afford compounds **6**/**7** as pale yellow oils in high yields (83/96%). The two alcohol groups in **6** and **7** were tosylated using TsCl in CH₂Cl₂ in the presence of 4-dimethylaminopyridine (DMAP) and Et₃N affording **8** or **9** in 78 or 83% yield, respectively. Subsequent treatment of **8** or **9** with 4,5-bis(2-cyanoethylthio)-1,3-dithiole-2-thione **9** (**10**) under high-dilution conditions using CsOH as the base gave the macrocyclic crown ether **11** or **12** in approximately 25% yield. Finally, cross-couplings of **11** and **12** with 5-tosyl-(1,3)-dithiolo[4,5-*c*]pyrrole-2-one ¹⁰ (**13**) in neat (EtO)₃P gave the MPTTF crown ethers **1** and **2** in 41 and 46% yields, respectively.

The MPTTF receptor molecules 1 and 2 were isolated as analytically pure yellow solids and high-resolution electrospray ionization mass spectrometry (HiRes-ESI-MS) of 1 and 2 produced peaks with the exact masses of m/z = 799.0520 and 853.9961, respectively, corresponding to the expected molecular ions $M^{\bullet+}$ (calcd $M^{\bullet+} = 799.0559$ and 853.9999, respectively).

A comparison of the ¹H NMR spectra of 1 and 2 recorded in CDCl₃ at 298 K reveals (Figures S1 and S2) significant differences. In 1, the resonances associated with the aromatic H₁ and H₂ protons (Scheme 1) were observed as a 4 H multiplet at $\delta = 6.89$ ppm, whereas the H₁ and H₂ protons in 2 were observed as two 2 H multiplets resonating at $\delta =$ 7.14 and 7.33 ppm, respectively, an observation that can be accounted for by the different substitutions of the benzene ring (i.e., oxygen vs sulfur). In compound 2, two triplets each integrating to 4 H were observed in the aliphatic region between 2.75 and 3.25 ppm, a feature that was assigned to the two chemically different SCH₂ groups present in 2, whereas only one 4 H triplet was observed in the 2.75–3.25 ppm region for 1. The remaining aromatic and aliphatic protons in 1 and 2 all appeared at the expected chemical-shift values (see Supporting Information).

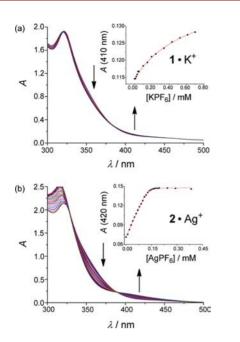
To increase the solubility and dissociation of KPF₆ and AgPF₆, the solution-state binding studies involving the

Scheme 1. Synthesis of the Receptor Molecules 1 and 2

receptors 1 and 2 and different cations were carried out in a 1:1 mixture of CH₂Cl₂/MeCN (UV-vis spectroscopy and cyclic voltammetry) or in a 1:1 mixture of CDCl₃/CD₃CN (NMR spectroscopy).

Initial evidence for the interactions between the receptors 1 and 2 and K⁺/Ag⁺ came from UV-vis absorption spectroscopy. When KPF₆ was added to a solution (CH₂Cl₂/MeCN (1:1), 298 K) of the receptor 1 significant spectral changes were observed. Figure 1a shows the spectral changes of 1 upon addition of 0-7 equiv of KPF₆. As the concentration of KPF₆ was increased, the intensity of the absorption band at 350 nm decreases, while the intensity at 410 nm increases leading to the formation of two isosbestic points at 320 and 375 nm, respectively. This observation is consistent with the formation of only two absorption species, the free receptor 1 and the 1•K⁺ complex. The resulting binding profile (Figure 1a, insert) was subjected to a standard nonlinear (1:1 host/guest) curve fitting analysis¹¹ from which a binding constant (K_a) of 2000 M⁻ $(\pm 20\%)$ for the **1**•K⁺ complex was obtained. Similar titration experiments were carried out with Ag⁺, Pb²⁺, Hg²⁺, Cd²⁺, Pd²⁺, Zn²⁺, Na⁺, and Li⁺. However, no perceptible changes in the UV-vis absorption spectra were observed indicating that the receptor 1 is highly selective toward K⁺.

UV-vis titration experiments carried out between the receptor **2** and K⁺, Ag⁺, Pb²⁺, Hg²⁺, Cd²⁺, Pd²⁺, Zn²⁺, Na⁺, and Li⁺ reveal that only in the case of Ag⁺ significant

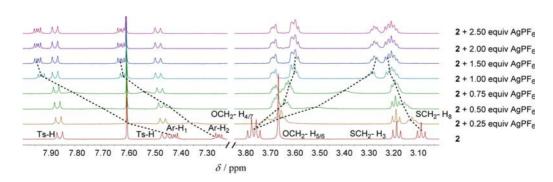

Org. Lett., Vol. 15, No. 7, 2013

⁽⁷⁾ Jeppesen, J. O.; Becher, J. Eur. J. Org. Chem. 2003, 3245–3266.
(8) For solubility reasons, the MPTTF derivatives 1 and 2 were

substituted with a tosyl group.
(9) Svenstrup, N.; Rasmussen, K. M.; Hansen, T. K.; Becher, J. Synthesis 1994, 8, 809–812.

^{(10) (}a) Jeppesen, J. O.; Takimiya, K.; Jensen, F.; Becher, J. *Org. Lett.* **1999**, *I*, 1291–1291. (b) Jeppesen, J. O.; Takimiya, K.; Jensen, F.; Brimert, T.; Nielsen, K.; Thorup, N.; Becher, J. *J. Org. Chem.* **2000**, *65*, 5794–5805.

⁽¹¹⁾ Connors, K. A. *Binding Constants*; John Wiley & Son: New York, 1987.


Figure 1. (a) UV—vis spectra recorded in CH₂Cl₂/MeCN (1:1) at 298 K of a 0.1 mM solution of **1** upon titration with K⁺. The insert shows the binding profile obtained using the 410 nm band as a probe and its nonlinear curve fit to a 1:1 model. (b) UV—vis spectra recorded in CH₂Cl₂/MeCN (1:1) at 298 K of a 0.1 mM solution of **2** upon titration with Ag⁺. The insert shows the binding profile obtained using the 420 nm band as a probe and its nonlinear curve fit to a 1:1 model.

changes were observed in the UV—vis absorption spectra. Titration (Figure 1b) of AgPF₆ into a solution (CH₂Cl₂/MeCN (1:1), 298 K) of the receptor **2** shows that the intensity of the absorption band at 370 nm decreases while the intensity at 420 nm increases with the concomitant formation of two isosbestic points at 328 and 385 nm, respectively. This feature indicates the presence of only two absorption species, the free receptor **2** and the complex **2**•Ag⁺. A nonlinear curve fitting analysis of the resulting binding profile (Figure 1b, insert) afforded a K_a value of 700 000 M⁻¹ (\pm 20%) for the **2**•Ag⁺ complex indicating that the receptor **2** is both highly sensitive and selective toward Ag⁺.

A comparison (Figure 2) of the ¹H NMR spectra (400 MHz, 298 K) recorded in a 1:1 mixture of CDCl₃ and CD₃CN of the free receptor 2 and the receptor 2 in the presence of AgPF₆ reveals significant chemical-shift differences for several of the resonances associated with the protons in the receptor 2, which indicates that the Ag⁺ ion is complexed to 2. In particular, the resonances associated with the aromatic protons (Scheme 1) are downfield shifted from $\delta = 7.25$ ppm to $\delta = 7.62$ ppm ($\Delta \delta = +0.37$ ppm) and from $\delta = 7.42$ ppm to $\delta = 7.95$ ppm ($\Delta \delta = +0.53$ ppm) for H₂ and H₁, respectively, whereas the aliphatic H₄ and H₇ protons (Scheme 1) are upfield shifted from $\delta = 3.75$ ppm to $\delta = 3.27$ ppm ($\Delta \delta = -0.48$ ppm) and $\delta = 3.60$ ($\Delta \delta =$ -0.15 ppm) indicating that these protons are highly affected by the complexation of Ag⁺ inside the cavity of the dithiabenzo-crown ether moiety. Addition of more than 1 equiv of Ag⁺ did not cause any significant changes in the ¹H NMR spectra of 2, thus confirming that 2 forms a 1:1 complex with Ag⁺. As a consequence of the strong binding (vide supra) between the receptor 2 and Ag⁺ and the fact that the ¹H NMR titration experiments were carried out with the concentration of 2 20 times higher than in the case of the corresponding UV-vis titration experiments, it was not possible to obtain a reliable K_a value for the binding between 2 and Ag⁺ using ¹H NMR spectroscopy, because the binding profile tended toward linearity with increasing Ag⁺ concentration, which made the nonlinear curve fitting procedure unreliable 13 for estimating the K_a value.

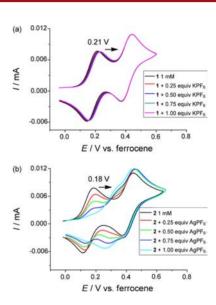
Similar ¹H NMR spectroscopic titration experiments were conducted with solutions containing K⁺, Pb²⁺, Hg²⁺, Cd²⁺, Pd²⁺, Zn²⁺, Na⁺, and Li⁺. However, no perceptible changes in the ¹H NMR spectra were observed supporting the notion that the **2** is highly selective toward Ag⁺.

The binding between receptor **1** and K⁺, Ag⁺, Pb²⁺, Hg²⁺, Cd²⁺, Pd²⁺, Zn²⁺, Na⁺, and Li⁺ were also studied using ¹H NMR spectroscopy. As observed in the UV–vis titration experiments (vide supra), only the addition of KPF₆ to a solution (CDCl₃/CD₃CN (1:1), 298 K) of the receptor **1** produced observable changes in the ¹H NMR spectra (Figure S20). However, the observed chemical-shift differences for the formation of the **1**•K⁺ complex were smaller and required a higher concentration of the cation as

Figure 2. Partial ¹H NMR spectra (400 MHz, 298 K) recorded in a 1:1 mixture of CDCl₃/CD₃CN of the receptor **2** (2 mM) upon titration with Ag⁺.

1454 Org. Lett., Vol. 15, No. 7, 2013

compared to the formation of the 2•Ag⁺ complex indicating that the **1**•K⁺ complex is weaker than the **2**•Ag⁺ complex. UV-vis and ¹H NMR spectroscopic studies revealed that 1 and 2 are able to complex cations in solution. However, these receptors were also designed to allow the binding events to be followed via cation-induced changes in the electrochemical properties of the MPTTF units. Cyclic voltammetry (CV) was used to probe the changes in the redox potentials of 1 and 2 upon complexation with K⁺, Ag⁺, Pb²⁺, Hg²⁺, Cd²⁺, Pd²⁺, Zn²⁺, Na⁺, and Li⁺. In the case of 1, only the addition of K⁺ produced perceptible changes in the cyclic voltammograms (CVs) recorded in a 1:1 mixture of CH₂Cl₂ and MeCN at 298 K, whereas receptor 2 only produced observable changes in the CVs upon addition of AgPF₆ in accordance with the results obtained from the UV-vis and ¹H NMR spectroscopic investigations.


The progressive addition (Figure 3a) of KPF₆ to a solution of the receptor 1 in CH₂Cl₂/MeCN (1:1) at 298 K resulted in a small anodic shift of the first oxidation potential associated with the MPTTF unit, whereas the second oxidation potential was unaffected by the presence of KPF₆. These results can be explained as follows: addition of KPF₆ to a solution of 1 leads to the formation of the $1 \cdot K^+$ complex; after the first oxidation of the MPTTF unit, decomplexation takes place caused by Coulombic repulsion between the mono-oxidized MPTTF^{*+} unit and K⁺. Consequently, the second oxidation of the MPTTF^{*+} unit in the mixture of uncomplexed receptor $1 \cdot K^+$ and uncomplexed K⁺ takes place at the same potential as that of the second oxidation of 1.

A more distinct response in the CVs of receptor **2** upon addition of Ag^+ was observed. In contrast to the formation of the **1**•K⁺ complex, the kinetics for the dissociation of the **2**•Ag⁺ complex were found (Figure 3b) to be slow on the CV time scale, and both complexed and uncomplexed species can be observed in the CVs recorded in $CH_2Cl_2/MeCN$ (1:1) at 298 K. Thus, the addition of between 0 and 1 molar equiv of $AgPF_6$ to a solution of the receptor **2** allows the oxidation potential for both the free receptor **2** (anodic peak potential: $E_1^{ox} = +0.18$ V) and the complex **2**•Ag⁺ ($E_1^{ox} = +0.34$ V) to be determined.

Therefore $\Delta E_1^{\text{ox}} = +0.16 \text{ V}$, which to the best of our knowledge is one of the highest values observed so far for cation responsive receptors based on TTF. The second oxidation potential of **2** was only slightly affected by the addition of AgPF₆ indicating that the mono-oxidized receptor **2**°+ has a much lower affinity toward Ag⁺. Simulation of the electrochemical titration data using DigiSim3.05 (BAS Inc. ¹⁴) provided a K_a value of 2000 M⁻¹ ($\pm 20\%$) for the formation of the **1**•K⁺ complex. Owing to the essentially

irreversible formation of the $2 \cdot Ag^+$ complex, the simulations did not allow for the evaluation of the equilibrium constant for its formation. However, good agreement between the experimental and the simulated data was obtained for values of K_a larger than approximately $10\,000~M^{-1}$. When considered in concert, the electrochemical investigations support the spectroscopic analyses and provide further evidence that 1 and 2 are highly selective toward K^+ and Ag^+ , respectively.

In summary we have designed and synthesized two new redox-active MPTTF based receptors and demonstrated how small modifications in the dibenzo crown ether ring can have a huge impact on the selectivity toward cations. This finding is undoubtedly not unimportant when it comes to the future design of redox-active molecular receptors based on TTF and crown ethers.

Figure 3. (a) CVs of the receptor **1** (1.0 mM) recorded in a 1:1 mixture of CH₂Cl₂ and MeCN at 298 K by adding in increasing quantities of a concentrated MeCN solution of KPF₆. (b) CVs of the receptor **2** (1.0 mM) recorded in a 1:1 mixture of CH₂Cl₂ and MeCN at 298 K by adding increasing quantities of a concentrated MeCN solution of AgPF₆. (The potentials were referred to ferrocene, the supporting electrolyte was *n*-Bu₄NPF₆, and the scan rate was 200 mV s⁻¹.)

Acknowledgment. This research was supported by the Villum Foundation and The Danish Natural Science Reasearch Council (FNU, Project No. 11-106744).

Supporting Information Available. Experimental procedures for the synthesis of 1, 2, 6–9, 11, and 12; spectroscopic characterization of 1 and 2; description of titration experiments; and description of electrochemical measurements. This material is available free of charge via the Internet at http://pubs.acs.org.

Org. Lett., Vol. 15, No. 7, 2013

⁽¹²⁾ A value of 700 000 M⁻¹ for the formation of the **2**•Ag⁺ complex is more than 2 orders of magnitude higher as compared to other TTF based sensors for Ag⁺; see: (a) Le Derf, F.; Mazari, M.; Mercier, N.; Levillain, E.; Gorgues, A.; Sallé, M.; Richomme, P.; Becher, J.; Garin, G.; Orduna, J. *Chem. Commun.* **1999**, 1417–1418. (b) Johnston, B.; Goldenberg, L. M.; Bryce, M. R.; Kataky, R. *J. Chem. Soc., Perkin Trans.* 2 **2000**, 189–190.

^{(13) (}a) de Boer, J. A. A.; Reinhoudt, D. N. J. Am. Chem. Soc. 1985, 107, 5347–5351. (b) Fielding, L. Tetrahedron 2000, 56, 6151–6170.

⁽¹⁴⁾ Rudolf, M.; Feldberg, S. W. *DigiSim 3.03a*; Bioanalytical Systems, Inc.: West Lafayette, IN 47906 USA.

The authors declare no competing financial interest.